Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования






Скачать 347.63 Kb.
НазваниеРабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования
страница1/4
Дата публикации05.11.2013
Размер347.63 Kb.
ТипРабочая программа
ley.se-todo.com > Математика > Рабочая программа
  1   2   3   4

Рабочая программа

по геометрии

11 класс

Пояснительная записка


Статус документа

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 10-11 классов и реализуется на основе следующих документов:

1.      Программа для общеобразовательных школ, гимназий, лицеев:

Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 2002; 4-е изд. – 2004г.

2.      Стандарт основного общего образования по математике.

Стандарт среднего (полного) общего образования по математике // Математика в школе.– 2004г,- № 4 ,- с.9

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Цели


^ Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

^ Место предмета в федеральном базисном учебном плане

На изучение предмета отводится 2 часа в неделю итого 68 часов за учебный год.

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

^ Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

^ Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

^ Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.

Цели:

  • Формировать умение выполнять дополнительные построения, сечения, выбирать метод решения, проанализировать условие задачи;

  • Научить владеть новыми понятиями, переводить аналитическую зависимость в наглядную форму и обратно;

Задачи:

  • Уметь решать задачи на построение сечений, нахождение угла между прямой и плоскостью;

  • Выполнять сложение и вычитание векторов в пространстве;

  • Находить площади поверхности многогранников;

  • Изучить основные свойства плоскости;

  • Рассмотреть взаимное расположение двух прямых, прямой и плоскости;

  • Изучить параллельность прямых и плоскостей, параллельность плоскостей, перпендикулярность прямых и плоскостей;

^ СОДЕРЖАНИЕ ПРОГРАММЫ

11 класс (2ч в неделю, всего 68 ч)

1. Координаты точки и координаты векторов в пространстве. Движения (15 ч).

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

^ Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач.

Цели: сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии

О с н о в н а я ц е л ь – обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.

^ 2.Цилиндр, конус, шар (17 ч)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

^ Цель: выработка у учащихся систематических сведений об основных видах тел вращения.

Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел. В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет продолжить работу по формированию логических и графических умений.

О с н о в н а я ц е л ь – сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.

^ 3. Объем и площадь поверхности (22 ч).

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

^ Цель: систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Цели: продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Понятие объема вводить по аналогии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,

так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливать, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.

Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.

^ Повторение (14 ч.)

Цель: повторение и систематизация материала 11 класса.

Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения
  1   2   3   4

Добавить документ в свой блог или на сайт

Похожие:

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconРабочая программа по математике, 5 класс, средняя ступень, уровень...
Рабочая программа составлена на основе федерального компонента государственного стандарта основного общего образования по математике...

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconПояснительная записка рабочая программа по математике составлена...
Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов: рабочей программой основного...

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconРабочая программа по математике составлена на основе федерального...
Руководитель мо заместитель Руководитель моу руководителя по увр «Старо-Казеевская сош»

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconРабочая учебная программа по математике в 4 классе Составлена на...
Составлена на основе федерального компонента государственного стандарта начального общего образования и авторской программы по математике...

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconРабочая программа по геометрии (базовый уровень)
...

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconРабочая программа по математике составлена на основе федерального...
Данная рабочая программа ориентирована на учащихся 5 9 классов и реализуется на основе следующих документов

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconПояснительная записка рабочая программа составлена на основе федерального...
Рабочая программа составлена на основе федерального компонента Государственного стандарта основного общего образования и Программы...

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconРабочая программа для 4 класса по математике
Рабочая программа по предмету «Математика» в 4 классе составлена на основе федерального компонента государственного стандарта основного...

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconПояснительная записка рабочая программа составлена на основе федерального...
Рабочая программа составлена на основе федерального компонента Государственного стандарта основного общего образования и примерной...

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования iconРабочая программа по литературе для 6 класса составлена на основе...
...



Школьные материалы


При копировании материала укажите ссылку © 2018
контакты
ley.se-todo.com

Поиск